Multiple Dirichlet series over rational function fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Dirichlet Series over Rational Function Fields

We explicitly compute some double Dirichlet series constructed from n order Gauss sums over rational function fields. These turn out to be rational functions in q−s1 and q−s2 , where q is the size of the constant field. Key use is made of the group of 6 functional equations satisfied by these series.

متن کامل

Double Dirichlet Series over Function Fields

We construct a nite-dimensional vector space of functions of two complex variables attached to a smooth algebraic curve C over a nite eld Fq , q odd, and a level. These functions collect the analytic information about the cohomology of the curve and its quadratic twists that is encoded in the corresponding L-functions; they are double Dirichlet series in two independent complex variables s;w. W...

متن کامل

Twisted Weyl Group Multiple Dirichlet Series Over the Rational Function Field

TWISTED WEYL GROUP MULTIPLE DIRICHLET SERIES OVER THE RATIONAL FUNCTION FIELD SEPTEMBER 2013 HOLLEY A. FRIEDLANDER, B.A., UNIVERSITY OF VERMONT M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Paul E. Gunnells Let K be a global field. For each prime p of K, the p-part of a multiple Dirichlet series defined over K is a generating functio...

متن کامل

The Gross Conjecture over Rational Function Fields

We study the Gross Conjecture on the cyclotomic function field extension k(Λf )/k where k = Fq(t) is the rational function field and f is a monic polynomial in Fq[t]. We show the conjecture in the Fermat curve case(i.e., when f = t(t− 1)) by direct calculation. We also prove the case when f is irreducible which is analogous to Weil’s reciprocity law. In the general case, we manage to show the w...

متن کامل

Theta Series, Eisenstein Series and Poincaré Series over Function Fields

We construct analogues of theta series, Eisenstein series and Poincaré series for function fields of one variable over finite fields, and prove their basic properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2008

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa132-4-7